Jump to content

Negative Emissions Technologies: Difference between revisions

updated intro
(take out test)
(updated intro)
Line 1:
''This page is about the intersection of negative emissions technologies and machine learning in the context of climate change mitigation. For an overview of carbon dioxide removal as a whole, please see the [https://en.wikipedia.org/wiki/Carbon_dioxide_removal Wikipedia page] on this topic.''
 
As described in the paper "Tackling Climate Change with Machine Learning"<ref>{{Cite journal|last=Rolnick|first=David|last2=Donti|first2=Priya L.|last3=Kaack|first3=Lynn H.|last4=Kochanski|first4=Kelly|last5=Lacoste|first5=Alexandre|last6=Sankaran|first6=Kris|last7=Ross|first7=Andrew Slavin|last8=Milojevic-Dupont|first8=Nikola|last9=Jaques|first9=Natasha|last10=Waldman-Brown|first10=Anna|last11=Luccioni|first11=Alexandra|date=2019-11-05|title=Tackling Climate Change with Machine Learning|url=http://arxiv.org/abs/1906.05433|journal=arXiv:1906.05433 [cs, stat]}}</ref>:<blockquote>Even if we could cut emissions to zero today, we would still face significant climate consequences from greenhouse gases already in the atmosphere. Eliminating emissions entirely may also be tricky, given the sheer diversity of sources (such as airplanes and cows). Instead, many experts argue that to meet critical climate goals, global emissions must become net-negative—that is, we must remove more CO<sub>2</sub> from the atmosphere than we release <ref>{{Cite journal|last=Fuss|first=Sabine|last2=Canadell|first2=Josep G.|last3=Peters|first3=Glen P.|last4=Tavoni|first4=Massimo|last5=Andrew|first5=Robbie M.|last6=Ciais|first6=Philippe|last7=Jackson|first7=Robert B.|last8=Jones|first8=Chris D.|last9=Kraxner|first9=Florian|last10=Nakicenovic|first10=Nebosja|last11=Le Quéré|first11=Corinne|date=2014-10|title=Betting on negative emissions|url=https://www.nature.com/articles/nclimate2392|journal=Nature Climate Change|language=en|volume=4|issue=10|pages=850–853|doi=10.1038/nclimate2392|issn=1758-6798}}</ref><ref>{{Cite journal|last=Gasser|first=T.|last2=Guivarch|first2=C.|last3=Tachiiri|first3=K.|last4=Jones|first4=C. D.|last5=Ciais|first5=P.|date=2015-08-03|title=Negative emissions physically needed to keep global warming below 2 °C|url=https://www.nature.com/articles/ncomms8958|journal=Nature Communications|language=en|volume=6|issue=1|pages=1–7|doi=10.1038/ncomms8958|issn=2041-1723}}</ref>. Although there has been significant progress in negative emissions research <ref name=":0">{{Cite book|last=National Academies of Sciences|first=Engineering|url=https://www.nap.edu/catalog/25259/negative-emissions-technologies-and-reliable-sequestration-a-research-agenda|title=Negative Emissions Technologies and Reliable Sequestration: A Research Agenda|date=2018-10-24|isbn=978-0-309-48452-7|language=en}}</ref><ref name=":1">{{Cite web|last=ICEF|first=|date=|title=Direct Air Capture of Carbon Dioxide: ICEF Roadmap 2018|url=https://www.icef-forum.org/|url-status=live|archive-url=|archive-date=|access-date=2020-09-12|website=www.icef-forum.org}}</ref><ref>{{Cite web|title=ShieldSquare Captcha|url=http://stacks.iop.org/1748-9326/13/i=6/a=063001?key=crossref.9b8e1db79e5bb89326008b4b6859ede0|access-date=2020-09-12|website=stacks.iop.org|language=en}}</ref><ref>{{Cite journal|last=Fuss|first=Sabine|last2=Lamb|first2=William F.|last3=Callaghan|first3=Max W.|last4=Hilaire|first4=Jérôme|last5=Creutzig|first5=Felix|last6=Amann|first6=Thorben|last7=Beringer|first7=Tim|last8=Garcia|first8=Wagner de Oliveira|last9=Hartmann|first9=Jens|last10=Khanna|first10=Tarun|last11=Luderer|first11=Gunnar|date=2018-05|title=Negative emissions—Part 2: Costs, potentials and side effects|url=https://doi.org/10.1088%2F1748-9326%2Faabf9f|journal=Environmental Research Letters|language=en|volume=13|issue=6|pages=063002|doi=10.1088/1748-9326/aabf9f|issn=1748-9326}}</ref><ref>{{Cite web|title=ShieldSquare Captcha|url=http://stacks.iop.org/1748-9326/13/i=6/a=063003?key=crossref.a329c88fc7b90b61b136cf0c66c67240|access-date=2020-09-12|website=stacks.iop.org|language=en}}</ref>, the actual CO<sub>2</sub> removal industry is still in its infancy. As such, many of the ML applications we outline in this section are either speculative or in the early stages of development or commercialization.
 
Some of the most commonly known negative emissions technologies include nature-based solutions such as [[Forestry and Other Land Use|afforestation]] (growing more trees and storing carbon in this biomass) and [[Agriculture|regenerative farming]] practices as well as highly engineered technologies such as direct air capture (DAC) with sequestration of the captured CO<sub>2</sub> in underground geologic formations. Another commonly discussed negative emissions technology is biomass combustion with carbon capture and sequestration, described further in [[Electricity Systems]].</blockquote>Many DAC technologies are in early stages of commercialization.<ref name=":0" /><ref name=":1" />, though there is still large uncertainty regarding geological storage of captured CO<sub>2</sub> on long time-scales, and deployment of negative emission technologies on large-scales and in a sustainable way is unlikely<ref>{{Cite journal|last=Minx|first=Jan C.|last2=Lamb|first2=William F.|last3=Callaghan|first3=Max W.|last4=Fuss|first4=Sabine|last5=Hilaire|first5=Jérôme|last6=Creutzig|first6=Felix|last7=Amann|first7=Thorben|last8=Beringer|first8=Tim|last9=Garcia|first9=Wagner de Oliveira|last10=Hartmann|first10=Jens|last11=Khanna|first11=Tarun|date=2018-05|title=Negative emissions—Part 1: Research landscape and synthesis|url=https://doi.org/10.1088/1748-9326/aabf9b|journal=Environmental Research Letters|language=en|volume=13|issue=6|pages=063001|doi=10.1088/1748-9326/aabf9b|issn=1748-9326}}</ref><ref>{{Cite journal|last=Fuss|first=Sabine|last2=Lamb|first2=William F|last3=Callaghan|first3=Max W|last4=Hilaire|first4=Jérôme|last5=Creutzig|first5=Felix|last6=Amann|first6=Thorben|last7=Beringer|first7=Tim|last8=de Oliveira Garcia|first8=Wagner|last9=Hartmann|first9=Jens|last10=Khanna|first10=Tarun|last11=Luderer|first11=Gunnar|date=2018-05-21|title=Negative emissions—Part 2: Costs, potentials and side effects|url=https://iopscience.iop.org/article/10.1088/1748-9326/aabf9f|journal=Environmental Research Letters|language=en|volume=13|issue=6|pages=063002|doi=10.1088/1748-9326/aabf9f|issn=1748-9326}}</ref><ref>{{Cite journal|last=Nemet|first=Gregory F|last2=Callaghan|first2=Max W|last3=Creutzig|first3=Felix|last4=Fuss|first4=Sabine|last5=Hartmann|first5=Jens|last6=Hilaire|first6=Jérôme|last7=Lamb|first7=William F|last8=Minx|first8=Jan C|last9=Rogers|first9=Sophia|last10=Smith|first10=Pete|date=2018-05-21|title=Negative emissions—Part 3: Innovation and upscaling|url=https://iopscience.iop.org/article/10.1088/1748-9326/aabff4|journal=Environmental Research Letters|language=en|volume=13|issue=6|pages=063003|doi=10.1088/1748-9326/aabff4|issn=1748-9326}}</ref>. The underlying chemical processes are fairly well understood and the design of these systems generally does not require machine learning; however, ML may be useful in designing more effective CO<sub>2</sub> sorbents. ML also may have a number of applications in CO<sub>2</sub> sequestration, namely in identifying, modeling, and monitoring CO<sub>2</sub> sequestration sites.
 
==Machine Learning Application Areas==
Cookies help us deliver our services. By using our services, you agree to our use of cookies.