Jump to content

Sequestration Site Monitoring: Difference between revisions

add intro
(Created page with "{{Stub}} {{Disclaimer}} ==Background Readings== ==Conferences, Journals, and Professional Organizations== ==Libraries and Tools== ==Data== ==Future Directions== == Releva...")
 
(add intro)
Line 3:
{{Disclaimer}}
 
ML can help monitor and maintain active sequestration sites. Noisy sensor measurements must be translated into inferences about subsurface CO<sub>2</sub> flow and remaining injection capacity <ref>{{Cite journal|last=Celia|first=M. A.|last2=Bachu|first2=S.|last3=Nordbotten|first3=J. M.|last4=Bandilla|first4=K. W.|date=2015|title=Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017609|journal=Water Resources Research|language=en|volume=51|issue=9|pages=6846–6892|doi=10.1002/2015WR017609|issn=1944-7973}}</ref>; recently, <ref>{{Cite journal|last=Mo|first=Shaoxing|last2=Zhu|first2=Yinhao|last3=Zabaras|first3=Nicholas|last4=Shi|first4=Xiaoqing|last5=Wu|first5=Jichun|date=2019|title=Deep Convolutional Encoder-Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR023528|journal=Water Resources Research|language=en|volume=55|issue=1|pages=703–728|doi=10.1029/2018WR023528|issn=1944-7973}}</ref> found success using convolutional image-to-image regression techniques for uncertainty quantification in a global CO2 storage simulation study. Additionally, it is important to monitor for CO<sub>2</sub> leaks <ref>{{Cite journal|last=Moriarty|first=Dylan|last2=Dobeck|first2=Laura|last3=Benson|first3=Sally|date=2014-01-01|title=Rapid surface detection of CO2 leaks from geologic sequestration sites|url=http://www.sciencedirect.com/science/article/pii/S1876610214022425|journal=Energy Procedia|series=12th International Conference on Greenhouse Gas Control Technologies, GHGT-12|language=en|volume=63|pages=3975–3983|doi=10.1016/j.egypro.2014.11.427|issn=1876-6102}}</ref>. ML techniques have recently been applied to monitoring potential CO<sub>2</sub> leaks from wells <ref>{{Cite journal|last=Chen|first=Bailian|last2=Harp|first2=Dylan R.|last3=Lin|first3=Youzuo|last4=Keating|first4=Elizabeth H.|last5=Pawar|first5=Rajesh J.|date=2018-09-01|title=Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach|url=http://www.sciencedirect.com/science/article/pii/S0306261918307372|journal=Applied Energy|language=en|volume=225|pages=332–345|doi=10.1016/j.apenergy.2018.05.044|issn=0306-2619}}</ref>; computer vision approaches for emissions detection (see <ref>{{Cite journal|last=Chen|first=Bailian|last2=Harp|first2=Dylan R.|last3=Lin|first3=Youzuo|last4=Keating|first4=Elizabeth H.|last5=Pawar|first5=Rajesh J.|date=2018-09-01|title=Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach|url=http://www.sciencedirect.com/science/article/pii/S0306261918307372|journal=Applied Energy|language=en|volume=225|pages=332–345|doi=10.1016/j.apenergy.2018.05.044|issn=0306-2619}}</ref> and [[Greenhouse Gas Emissions Detection]]) may also be applicable.
 
 
==Background Readings==
Cookies help us deliver our services. By using our services, you agree to our use of cookies.