Tools for Individuals: Difference between revisions

From Climate Change AI Wiki
Content added Content deleted
(Changed the formatting)
(standardize headings)
Line 1: Line 1:
Individuals and households constantly make decisions that affect their carbon footprint, and many wish to reduce their impact. ML can help quantify the climate impact of consumer products and actions, estimate the benefits resulting from personal behavior change, provide appliance-level residential energy use data, identify households with high potential for efficiency gain, and optimize appliances to operate when low-carbon electricity is available. ML can also help effectively inform people and provide them constructive opportunities by modeling consumer behavior and simplifying information on climate-relevant laws and policies.
Individuals and households constantly make decisions that affect their carbon footprint, and many wish to reduce their impact. ML can help quantify the climate impact of consumer products and actions, estimate the benefits resulting from personal behavior change, provide appliance-level residential energy use data, identify households with high potential for efficiency gain, and optimize appliances to operate when low-carbon electricity is available. ML can also help effectively inform people and provide them constructive opportunities by modeling consumer behavior and simplifying information on climate-relevant laws and policies.

== Machine Learning Application Areas ==


== Background Readings ==
== Background Readings ==
Line 19: Line 21:
*'''Predictive segmentation of energy consumers (2016)'''<ref>{{Cite journal|last=Albert|first=Adrian|last2=Maasoumy|first2=Mehdi|date=2016-09|title=Predictive segmentation of energy consumers|url=https://linkinghub.elsevier.com/retrieve/pii/S0306261916307334|journal=Applied Energy|language=en|volume=177|pages=435–448|doi=10.1016/j.apenergy.2016.05.128}}</ref>: this paper proposes a predictive segmentation technique for identifying sub-groups in a large population that are both homogeneous with respect to certain patterns in customer attributes, and predictive with respect to a desired outcome. [https://www.researchgate.net/profile/Mehdi_Maasoumy/publication/303895476_PredictiveSegmentationOfEnergyConsumers/links/575b0b9e08aed884620d990a/PredictiveSegmentationOfEnergyConsumers.pdf Available here.]
*'''Predictive segmentation of energy consumers (2016)'''<ref>{{Cite journal|last=Albert|first=Adrian|last2=Maasoumy|first2=Mehdi|date=2016-09|title=Predictive segmentation of energy consumers|url=https://linkinghub.elsevier.com/retrieve/pii/S0306261916307334|journal=Applied Energy|language=en|volume=177|pages=435–448|doi=10.1016/j.apenergy.2016.05.128}}</ref>: this paper proposes a predictive segmentation technique for identifying sub-groups in a large population that are both homogeneous with respect to certain patterns in customer attributes, and predictive with respect to a desired outcome. [https://www.researchgate.net/profile/Mehdi_Maasoumy/publication/303895476_PredictiveSegmentationOfEnergyConsumers/links/575b0b9e08aed884620d990a/PredictiveSegmentationOfEnergyConsumers.pdf Available here.]


== Online courses and course materials ==
== Online Courses and Course Materials ==
''Under construction''
''Under construction''


Line 31: Line 33:
=== Major societies and organizations ===
=== Major societies and organizations ===


== Methods and Software ==
== Libraries and Tools ==


*[https://www.tmrow.com/ '''Tomorrow Project'''] - Calculates impact of your climate behaviors by using ML to read your data.
*[https://www.tmrow.com/ '''Tomorrow Project'''] - Calculates impact of your climate behaviors by using ML to read your data.
Line 45: Line 47:
* [https://openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states '''Commercial and Residential Hourly Load Profiles''']: contains hourly load profile data for 16 commercial building types and residential buildings in the United States.
* [https://openei.org/datasets/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states '''Commercial and Residential Hourly Load Profiles''']: contains hourly load profile data for 16 commercial building types and residential buildings in the United States.
* [https://openei.org/datasets/dataset/doe-buildings-performance-database-sample-residential-data '''Buildings Performance Database, sample residential data''']: a non-proprietary subset of the Department of Energy's Buildings Performance Database.
* [https://openei.org/datasets/dataset/doe-buildings-performance-database-sample-residential-data '''Buildings Performance Database, sample residential data''']: a non-proprietary subset of the Department of Energy's Buildings Performance Database.

== Selected problems ==
''Under construction''


== References ==
== References ==

Revision as of 18:45, 31 August 2020

Individuals and households constantly make decisions that affect their carbon footprint, and many wish to reduce their impact. ML can help quantify the climate impact of consumer products and actions, estimate the benefits resulting from personal behavior change, provide appliance-level residential energy use data, identify households with high potential for efficiency gain, and optimize appliances to operate when low-carbon electricity is available. ML can also help effectively inform people and provide them constructive opportunities by modeling consumer behavior and simplifying information on climate-relevant laws and policies.

Machine Learning Application Areas

Background Readings

General

  • Climate Change Needs Behavior Change: Making the case for behavioral solutions to reduce global warming (2018)[1]: a report on the foundations of climate change and the role for human behavior in slowing it down. Available here.

Individual and Household Consumption

  • Modeling of end-use energy consumption in the residential sector: A review of modeling techniques (2009)[2]: a review of the various modeling techniques used for modeling residential sector energy consumption.
  • Quantifying carbon footprint reduction opportunities for US households and communities (2011)[3] : this study uses consumption-based life cycle accounting techniques to quantify the carbon footprints of typical U.S. households and to quantify greenhouse gas and financial savings from 13 potential mitigation actions. Available here.
  • Residential load scheduling with renewable generation in the smart grid: A reinforcement learning approach (2018)[4]: this paper proposes of a comprehensive, Reinforcement Learning-based model with implementable solution considering consumer comfort, stochastic renewable power, and tariffs. Available here.

Behavior Change

  • Making carbon pricing work for citizens (2018) [5]: this paper synthesizes findings regarding the optimal use of carbon revenues from both traditional economic analyses and studies in behavioural and political science. Available here.
  • The future is now: reducing psychological distance to increase public engagement with climate change (2017)[6] : a study that looks at climate change communication intervention and how it can increase public engagement by reducing the psychological distance of climate change. Available here.
  • Predictive segmentation of energy consumers (2016)[7]: this paper proposes a predictive segmentation technique for identifying sub-groups in a large population that are both homogeneous with respect to certain patterns in customer attributes, and predictive with respect to a desired outcome. Available here.

Online Courses and Course Materials

Under construction

Community

Under construction

Major conferences

Major journals

Major societies and organizations

Libraries and Tools

  • Tomorrow Project - Calculates impact of your climate behaviors by using ML to read your data.
  • WattTime - Predicts marginal emissions cost of energy consumption in real time.
  • Ecological Footprint Explorer - an interactive tool to explore the Ecological Footprint and biocapacity for over 200 countries and regions, updated annually.

Data

Many of the existing datasets involve individual or household level information regarding energy consumption, transportation and consumer habits. Some useful datasets include:

References

  1. Katie Williamson, Aven Satre-Meloy, Katie Velasco, Kevin Green (2018). "Climate Change Needs Behavior Change: Making the Case for Behavioral Solutions to Reduce Global Warming" (PDF).CS1 maint: multiple names: authors list (link)
  2. Swan, Lukas G.; Ugursal, V. Ismet (2009-10). "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques". Renewable and Sustainable Energy Reviews. 13 (8): 1819–1835. doi:10.1016/j.rser.2008.09.033. Check date values in: |date= (help)
  3. Jones, Christopher M.; Kammen, Daniel M. (2011-05). "Quantifying Carbon Footprint Reduction Opportunities for U.S. Households and Communities". Environmental Science & Technology. 45 (9): 4088–4095. doi:10.1021/es102221h. ISSN 0013-936X. Check date values in: |date= (help)
  4. Remani, T.; Jasmin, E.A.; Ahamed, T.P. Imthias (2019-09). "Residential Load Scheduling With Renewable Generation in the Smart Grid: A Reinforcement Learning Approach". IEEE Systems Journal. 13 (3): 3283–3294. doi:10.1109/JSYST.2018.2855689. ISSN 1932-8184. Check date values in: |date= (help)
  5. Klenert, David; Mattauch, Linus; Combet, Emmanuel; Edenhofer, Ottmar; Hepburn, Cameron; Rafaty, Ryan; Stern, Nicholas (2018-08). "Making carbon pricing work for citizens". Nature Climate Change. 8 (8): 669–677. doi:10.1038/s41558-018-0201-2. ISSN 1758-678X. Check date values in: |date= (help)
  6. Jones, Charlotte; Hine, Donald W.; Marks, Anthony D. G. (2017-02). "The Future is Now: Reducing Psychological Distance to Increase Public Engagement with Climate Change: Reducing Psychological Distance". Risk Analysis. 37 (2): 331–341. doi:10.1111/risa.12601. Check date values in: |date= (help)
  7. Albert, Adrian; Maasoumy, Mehdi (2016-09). "Predictive segmentation of energy consumers". Applied Energy. 177: 435–448. doi:10.1016/j.apenergy.2016.05.128. Check date values in: |date= (help)