Solar Geoengineering: Difference between revisions

partially redo intro
No edit summary
(partially redo intro)
Line 1:
''This page is about the intersection of solar geoengineering and machine learning. For an overview of solar geoengineering as a whole, please see the [https://en.wikipedia.org/wiki/Solar_radiation_management Wikipedia page] on this topic.''
 
Solar geoengineering refers of proposals aimed at increasing the amount of heat the Earth releases, in order to counteract global warming caused by the greenhouse effect. In particular, solar geoengineering proposals seek to "reflect a small fraction of sunlight back into space or increase the amount of solar radiation that escapes back into space to cool the planet."<ref name=":0">{{Cite web|title=Geoengineering|url=https://geoengineering.environment.harvard.edu/geoengineering|website=geoengineering.environment.harvard.edu|access-date=2020-12-07|language=en}}</ref> Examples of such proposals include attempting to make clouds brighter so they reflect back more sunlight; installing sun shields in space; and scattering aerosols into the stratosphere in order to scatter a small amount of sunlight.<ref name=":0" />
Solar geoengineering, much like the greenhouse gases causing climate change, shifts the balance between how much heat the Earth absorbs and how much it releases. The difference is that it is done deliberately, and in the opposite direction. The most common umbrella strategy is to make the Earth more reflective, keeping heat out, though there are also methods of helping heat escape (besides CO2 removal, which is discussed in [[Forestry and Other Land Use]]).
 
Solar engineering proposals come with many uncertainties, risks, and governance challenges. For instance, [TODO finish]
 
== Machine Learning Application Areas ==