Forestry and Other Land Use: Difference between revisions

(Created page with "TODO: add context regarding contribution to emissions, connection to ML, and selected readings == Data == == Methods and Software == == Recommended Readings == == Communi...")
 
 
(22 intermediate revisions by 4 users not shown)
Line 1:
''This page is about the intersection of forestry and machine learning in the context of climate change mitigation. For an overview of land use as a whole, please see the [https://en.wikipedia.org/wiki/Land_use Wikipedia page] on this topic.''
TODO: add context regarding contribution to emissions, connection to ML, and selected readings
The deterioration of the natural world is unparalleled in human history and a key driver of the climate crisis. Since 2000, we have lost 361 million ha of forest cover (roughly the size of Europe) accounting for about a quarter of global anthropogenic emissions<ref>{{Cite book|title=Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change|url=https://www.ipcc.ch/report/ar5/wg3/|date=2014|coeditors=|last=|first=|publisher=|year=|isbn=|location=|pages=}}</ref> (and this may be an underestimate<ref>{{Cite journal|title=Are the impacts of land use on warming underestimated in climate policy?|url=https://iopscience.iop.org/article/10.1088/1748-9326/aa836d|coauthors=|date=2017|last=Mahowald|first=Natalie|journal=|volume=|pages=|via=}}</ref>), largely driven by deforestation and forest degradation. Deforestation does not only release carbon (e.g., through slash-and-burn), but also destroys a multitude of other forest ecosystem services: preserving biodiversity, counteracting flooding and soil erosion, filtering water, and offering a livelihood for the local population. Major conservation and restoration efforts are underway to mitigate and safeguard against these losses, and to highlight the urgency of the issue, 2021-2030 has been declared the “UN Decade on Ecosystem Restoration”. However, we cannot preserve what we cannot measure. There is an urgent need to understand the location, health and ecological value of nature and biodiversity, and ensure these metrics are reflected in policy, finance, and decision-making. Machine learning (ML) can play a significant role in responding to this critical call for action and can accelerate the conservation and sustainable use of forestry and other land use. [[File:Agriculture.png|thumb|A schematic of the ways that machine learning can support carbon negative agriculture, forestry, and land use.]]
== Machine Learning Application Areas ==
ML can play an important role in helping us tackle climate change through land use. Precision agriculture could reduce carbon release from the soil and improve crop yield, which in turn could reduce the need for deforestation. Satellite images make it possible to estimate the amount of carbon sequestered in a given area of land, as well as track GHG emissions from it. ML can help monitor the health of forests and peatlands, predict the risk of fire, and contribute to sustainable forestry. These areas represent highly impactful applications, in particular, of sophisticated computer vision tools, though care must be taken in some cases to avoid negative consequences via the Jevons paradox.
 
=== Ecosystem monitoring ===
''Main article: [[Ecosystem Monitoring]]''
 
Monitoring the nature's health is a key element in policies surrounding its protection. Advancements in machine learning and remote sensing allow us to scale measurement, reporting and verification processes at an unprecedented scale.
== Data ==
 
* Biodiversity monitoring
== Methods and Software ==
* Peatland monitoring
* Forest health monitoring
*Reducing deforestation
 
==='''Land use management'''===
== Recommended Readings ==
Main article: ''[[Land Use Management]]''
 
* Automating afforestation
== Community ==
* Forecasting forest fires
* Reducing deforestation
*Empowering forest communities
*Estimating carbon stock
 
== RecommendedBackground Readings ==
=== Journals and conferences ===
 
=== Key documents ===
[https://www.ipcc.ch/srccl/ Special Report on Climate Change and Land — IPCC site]
 
== Online Courses and Course Materials ==
[https://www.nationalgeographic.org/projects/exploring-conservation/ National Geographic Free Conservation Course]
 
[https://www.coursera.org/learn/spatial-analysis UC Davis Geospatial and Environmental Analysis]
 
[https://www.coursera.org/learn/ecosystem-services University of Geneva's Introduction to Ecosystem Services]
 
== Conferences, Journals, and Professional Organizations ==
 
=== Journals andMajor conferences ===
 
* [https://www.iucncongress2020.org/ IUCN World Congress] (every four years)
* [http://www.fao.org/about/meetings/cofo/en/ Committee on Forestry] (annual)
* [https://www.agu.org/fall-meeting AGU Fall Meeting] (annual)
* [https://naturalcapitalproject.stanford.edu/events/2019-natural-capital-symposium Natural Capital Symposium] (annual)
* [https://www.globallandscapesforum.org/ Global Landscapes Forum] (annual)
 
=== Major journals ===
 
* [https://www.nature.com/ Nature] (Climate Change, Ecology and Evolution)
* [https://www.sciencemag.org/ Science]
* [https://www.journals.elsevier.com/remote-sensing-of-environment Remote Sensing of Environment]
* [https://www.mdpi.com/journal/remotesensing Remote Sensing]
 
=== SocietiesMajor societies and organizations ===
 
* [http://www.fao.org/home/en/ The Food and Agriculture Organization of the United Nations] (FAO) is a specialized agency of the United Nations that leads international efforts to defeat hunger and improve nutrition and food security
* [https://www.thegef.org/ The Global Environment Facility] (GEF) was established on the eve of the 1992 Rio Earth Summit to help tackle our planet’s most pressing environmental problems.
* [https://www.nature.org/en-us/ The Nature Conservancy] is a non-profit environmental organisation that has over one million members, and has protected more than 119,000,000 acres (48,000,000 ha) of land and thousands of miles of rivers worldwide
* [https://www.iucn.org/ The International Union for Conservation of Nature] (IUCN) is an international organization working in the field of nature conservation and sustainable use of natural resources.
*[https://www.southpole.com/ SouthPole], develops and finance projects around the world to reduce carbon emissions and protect biodiversity
*[https://www.goldstandard.org/ GoldStandard], is a third-party certification agency that ensures projects that reduced carbon emissions featured the highest levels of environmental integrity and also contributed to sustainable development
*[https://www.worldwildlife.org/ WWF]
*[https://www.worldbank.org/ World Bank]
*[https://www.1t.org/ 1t.org]
*[http://www.mangrovealliance.org/ Global Mangrove Alliance]
 
=== Major initiatives ===
 
* [https://www.unenvironment.org/news-and-stories/press-release/new-un-decade-ecosystem-restoration-offers-unparalleled-opportunity UN Decade of Ecosystem Restoration]
 
== Libraries and Tools ==
Some packages and tools that support machine learning-based forestry work are
 
*[https://restor.eco Restor.eco], an open data platform for the global restoration movement
*[https://www.globalforestwatch.org/ GlobalForestWatch], is a dynamic online forest monitoring and alert system that empowers people everywhere to better manage forests
*[https://www.globalmangrovewatch.org/ GlobalMangroveWatch], monitors to catalyse the action needed to protect and restore mangroves
*[https://trase.earth/ Trase.Earth] provides a dynamic supply chain visualisations for land change drivers and commodities
*[https://resourcetrade.earth/ Resourcetrade.Earth] features Chatham House’s extensive and authoritative database of international trade in natural resources, developed from United Nations data
*[http://www.openforis.org/tools/collect-earth.html Collect Earth] is a free, open source, and user-friendly tool using Google Earth Engine to visualize and analyze plots of land in order to assess deforestation and other forms of land-use-change
*[https://www.wri.org/our-work/project/forest-atlases/open-data-portals The Forest Atlases] are online platforms that help countries better manage their forest resources by combining government data with the latest forest monitoring technology
*[https://github.com/weecology/DeepForest DeepForest], is a python package for tree crown detection in airborne RGB imagery
*[https://github.com/ulaval-damas/tree-bark-classification BarkNet], is an open-source tree bark classification algorithm and dataset
 
== Data ==
Satellite imagery are often useful for monitoring land use. Some widely accessed resources include,
 
* [https://developers.google.com/earth-engine/datasets/catalog/landsat/ Landsat]
=== Societies and organizations ===
* [https://developers.google.com/earth-engine/datasets/catalog/sentinel/ Sentinel]
* [https://developers.google.com/earth-engine/datasets/catalog/ Earth Engine Data Catalog]
* [https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-methane?tab=overview Methane detection from satellite]
 
Forestry related data have also been the focus of machine learning competitions, including
=== Past and upcoming events ===
 
* [https://www.kaggle.com/c/planet-understanding-the-amazon-from-space Planet: Understanding the Amazon from space]
== Important considerations ==
* [https://idtrees.org/ IDTReeS: Integrating Data science with Trees and Remote Sensing]
 
Tree datasets:
== Next steps ==
* [hhttps://github.com/selva-lab-repo/TALLO TALLO: A global tree allometry and crown architecture database]
* [https://github.com/blutjens/awesome-forests Awesome-forests is a curated list of ground-truth/validation/in situ forest datasets for the forest-interested machine learning community]
 
== References ==