Electricity Systems: Difference between revisions

Content added Content deleted
(add subscript)
(add citation in picture caption)
Line 1: Line 1:
[[File:ElectricitySystems.png|thumb|A schematic of selected opportunities to reduce greenhouse emissions from electricity systems using machine learning. From "Tackling Climate Change with Machine Learning."]]
[[File:ElectricitySystems.png|thumb|A schematic of selected opportunities to reduce greenhouse emissions from electricity systems using machine learning. From "Tackling Climate Change with Machine Learning."<ref>{{Cite journal|last=Rolnick|first=David|last2=Donti|first2=Priya L.|last3=Kaack|first3=Lynn H.|last4=Kochanski|first4=Kelly|last5=Lacoste|first5=Alexandre|last6=Sankaran|first6=Kris|last7=Ross|first7=Andrew Slavin|last8=Milojevic-Dupont|first8=Nikola|last9=Jaques|first9=Natasha|last10=Waldman-Brown|first10=Anna|last11=Luccioni|first11=Alexandra|date=2019-11-05|title=Tackling Climate Change with Machine Learning|url=http://arxiv.org/abs/1906.05433|journal=arXiv:1906.05433 [cs, stat]}}</ref>]]
AI has been called the new electricity, given its potential to transform entire industries. Interestingly, electricity itself is one of the industries that AI is poised to transform. Many electricity systems are awash in data, and the industry has begun to envision next-generation systems (smart grids) driven by AI and ML.
AI has been called the new electricity, given its potential to transform entire industries. Interestingly, electricity itself is one of the industries that AI is poised to transform. Many electricity systems are awash in data, and the industry has begun to envision next-generation systems (smart grids) driven by AI and ML.