Editing Seasonal forecasting

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 3: Line 3:
 
{{Disclaimer}}
 
{{Disclaimer}}
   
Seasonal forecasting has traditionally been modeled using complex dynamical models, rather than statistical methods, often called [https://en.wikipedia.org/wiki/General_circulation_model general circulation models] (GCMs). However, seasonal variations, such as those due to El Niño/Southern Oscillation (ENSO) and polar vortices, are difficult to predict using traditional methods. ML and deep learning can improve our forecasting of multi-year ENSO events <ref>{{Cite journal|last=Ham|first=Yoo-Geun|last2=Kim|first2=Jeong-Hwan|last3=Luo|first3=Jing-Jia|date=2019|title=Deep learning for multi-year ENSO forecasts|url=https://www.nature.com/articles/s41586-019-1559-7|journal=Nature|language=en|volume=573|issue=7775|pages=568–572|doi=10.1038/s41586-019-1559-7|issn=1476-4687|via=}}</ref><ref>{{Cite journal|last=Toms|first=Benjamin A.|last2=Barnes|first2=Elizabeth A.|last3=Ebert‐Uphoff|first3=Imme|date=2020|title=Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS002002|journal=Journal of Advances in Modeling Earth Systems|language=en|volume=12|issue=9|pages=e2019MS002002|doi=10.1029/2019MS002002|issn=1942-2466}}</ref><ref>{{Cite web|url=https://www.climatechange.ai/papers/neurips2019/40/paper.pdf|title=Forecasting El Niño with Convolutional andRecurrent Neural Networks|last=Mahesh,|first=A., et al.,|date=2019|website=|url-status=live|archive-url=|archive-date=|access-date=}}</ref><ref>{{Cite web|url=https://arxiv.org/pdf/2012.01598.pdf|title=Graph Neural Networks for Improved El NiñoForecasting|last=Cachay,|first=S. R. et al.,|date=2020|website=|url-status=live|archive-url=|archive-date=|access-date=}}</ref><ref>{{Cite journal|last=Guo|first=Yanan|last2=Cao|first2=Xiaoqun|last3=Liu|first3=Bainian|last4=Peng|first4=Kecheng|date=2020|title=El Niño Index Prediction Using Deep Learning with Ensemble Empirical Mode Decomposition|url=https://www.mdpi.com/2073-8994/12/6/893|journal=Symmetry|language=en|volume=12|issue=6|pages=893|doi=10.3390/sym12060893|via=}}</ref> and polar vortices<ref>{{Cite journal|last=Cohen|first=Judah|last2=Coumou|first2=Dim|last3=Hwang|first3=Jessica|last4=Mackey|first4=Lester|last5=Orenstein|first5=Paulo|last6=Totz|first6=Sonja|last7=Tziperman|first7=Eli|date=2019|title=S2S reboot: An argument for greater inclusion of machine learning in subseasonal to seasonal forecasts|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/wcc.567|journal=WIREs Climate Change|language=en|volume=10|issue=2|pages=e00567|doi=10.1002/wcc.567|issn=1757-7799}}</ref>.
+
Seasonal variations, such as those due to El Niño/Southern Oscillation (ENSO) are difficult to predict using traditional methods. ML and deep learning can be useful for multi-year ENSO forecasting<ref>{{Cite journal|last=Ham|first=Yoo-Geun|last2=Kim|first2=Jeong-Hwan|last3=Luo|first3=Jing-Jia|date=2019|title=Deep learning for multi-year ENSO forecasts|url=https://www.nature.com/articles/s41586-019-1559-7|journal=Nature|language=en|volume=573|issue=7775|pages=568–572|doi=10.1038/s41586-019-1559-7|issn=1476-4687|via=}}</ref><ref>{{Cite journal|last=Toms|first=Benjamin A.|last2=Barnes|first2=Elizabeth A.|last3=Ebert‐Uphoff|first3=Imme|date=2020|title=Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability|url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS002002|journal=Journal of Advances in Modeling Earth Systems|language=en|volume=12|issue=9|pages=e2019MS002002|doi=10.1029/2019MS002002|issn=1942-2466}}</ref><ref>{{Cite web|url=https://www.climatechange.ai/papers/neurips2019/40/paper.pdf|title=Forecasting El Niño with Convolutional andRecurrent Neural Networks|last=Mahesh,|first=A., et al.,|date=2019|website=|url-status=live|archive-url=|archive-date=|access-date=}}</ref><ref>{{Cite web|url=https://arxiv.org/pdf/2012.01598.pdf|title=Graph Neural Networks for Improved El NiñoForecasting|last=Cachay,|first=S. R. et al.,|date=2020|website=|url-status=live|archive-url=|archive-date=|access-date=}}</ref><ref>{{Cite journal|last=Guo|first=Yanan|last2=Cao|first2=Xiaoqun|last3=Liu|first3=Bainian|last4=Peng|first4=Kecheng|date=2020|title=El Niño Index Prediction Using Deep Learning with Ensemble Empirical Mode Decomposition|url=https://www.mdpi.com/2073-8994/12/6/893|journal=Symmetry|language=en|volume=12|issue=6|pages=893|doi=10.3390/sym12060893|via=}}</ref>.
   
 
==Background Readings==
 
==Background Readings==
Please note that all contributions to Climate Change AI Wiki are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) (see Climate Change AI Wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)