Difference between revisions of "Public Policy and Decision Science"

From Climate Change AI Wiki
Jump to navigation Jump to search
(Created page with "TODO: add context regarding contribution to emissions, connection to ML, and selected readings == Data == == Methods and Software == == Recommended Readings == == Communi...")
 
(First draft of this page, some TODOs remain)
Line 1: Line 1:
TODO: add context regarding contribution to emissions, connection to ML, and selected readings
+
'''''TODO: add context regarding contribution to emissions, connection to ML, and selected readings (summarize)'''''
  
 +
'''Decision + Policy'''
  
 +
When creating policies, decision-makers must often negotiate fundamental uncertainties in the underlying data. ML can help alleviate some of this uncertainty by extracting information from satellite imagery, sensors, social media posts, policy documents, and other sources (as detailed elsewhere in the paper).
 +
 +
Decision-makers often construct mathematical models to help them assess or trade off between different policy alternatives. ML can help provide new techniques for working with integrated assessment models, multi-objective optimization, and other models commonly used by decision-makers.
 +
 +
When creating new policies, decision-makers may wish to understand previous policies and analyze how these policies performed. ML can help on both fronts by analyzing the text of existing policies and by performing causal inference on historical data.
 +
 +
'''Markets'''
 +
 +
Carbon pricing and other market-based measures can incentivize the reduction of greenhouse gas emissions. ML can help predict prices in carbon markets and analyze the main drivers of these prices.
 +
 +
When designing market-based strategies, it is necessary to understand how effectively each strategy will reduce emissions, as well as how the underlying socio-technical system may be affected. ML can help assess the outcomes of market-based strategies to ensure they are effective and equitable.
 
== Data ==
 
== Data ==
 +
'''''TODO: Intro Paragraph'''''
 +
 +
* [https://www.climatesmartplanning.org/data.html World Bank ClimateSmart data portal]
 +
* [https://sedac.ciesin.columbia.edu/data/set/entri-treaty-status-2012 Environmental Treaty Status Data Set, 2012 Release (1940–2012)]
 +
* [https://www.cgdev.org/publication/dataset-vulnerability-climate-change Vulnerability to Climate Change Dataset]
 +
* [http://datahub.io/core/eu-emissions-trading-system CO2 “price” in European ETS] (European Union Emissions Trading System (EU ETS) data from EUTL)
 +
* [https://sedac.ciesin.columbia.edu/data/set/ipcc-socio-economic-baseline IPCC Socio-Economic Baseline Data, v1] (1980, 1990, 1991, 1992, 1993, 1994, 1995, 2025)
 +
* [https://sedac.ciesin.columbia.edu/data/set/ipcc-ar4-observed-climate-impacts IPCC Fourth Assessment Report (AR4) Observed Climate Change Impacts, v1 (]1970–2004)
  
 
== Methods and Software ==
 
== Methods and Software ==
 +
'''''TODO: Intro par'''''
 +
 +
* [https://www.carbonpricingleadership.org/calendar/2019/1/18/carbonsim-edfs-carbon-market-simulation-tool Carbon market simulation tool]
 +
* Python packages for multi-objective optimization:
 +
** [https://projects.g-node.org/emoo/ Evolutionary Multi-Objective Optimization (EMOO)]
 +
** [https://platypus.readthedocs.io/ Platypus - Multiobjective Optimization in Python]: Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs), providing optimization algorithms and analysis tools for multiobjective optimization.
 +
* [https://www.mathworks.com/discovery/multiobjective-optimization.html Matlab package for multi-objective optimization]
  
 +
<br />
 
== Recommended Readings ==
 
== Recommended Readings ==
 +
 +
==== General ====
 +
 +
* Resources for Effective Climate Decisions. (Ch. 4) [https://www.nap.edu/read/12784/chapter/6#126 Informing an Effective Response to Climate Change.] (2010)
 +
* Dryzek, J.S. et al., [https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199566600.001.0001/oxfordhb-9780199566600-e-1 Climate Change and Society: Approaches and Responses.] (2011)
 +
* Holt, R.F. et al., [https://www2.gov.bc.ca/assets/gov/environment/natural-resource-stewardship/nrs-climate-change/applied-science/holtreport2assess4approaches.pdf Assessment and Decision-making for Climate Change: An Overview of Four Approaches] (2012)
 +
* Adge, N.W., [https://www.crcresearch.org/files-crcresearch/File/adger_03.pdf Social Capital, Collective Action, and Adaptation to Climate Change]. (2003)
 +
* Intergovernmental Panel on Climate Change (IPCC). [https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter3.pdf Social, Economic, and Ethical Concepts and Methods.] (Ch. 3). (2014)
 +
 +
==== Policy Design ====
 +
 +
* World Health Organizaition. From Science to Policy: Developing Responses to Climate Change. (Ch. 12). [https://www.who.int/globalchange/climate/en/chapter12.pdf Climate Change and Human Health - Risks and Responses.] (1996)
 +
* Roelich, K. and Giesekam, J. [https://www.tandfonline.com/doi/full/10.1080/14693062.2018.1479238 Decision making under uncertainty in climate change mitigation: introducing multiple actor motivations, agency and influence]. (2018)
 +
* Zambrano-Barragán, C. [https://www.wri.org/our-work/project/world-resources-report/decision-making-and-climate-change-uncertainty-setting Decision Making and Climate Change Uncertainty: Setting the Foundations for Informed and Consistent Strategic Decisions.] (2019)
 +
* European Environmental Agency. [https://www.eea.europa.eu/themes/climate/policy-context Climate Change Policies] (2016)
 +
 +
==== Markets and Pricing ====
 +
 +
* Kolk, K., Pinkse, J. [https://www.sciencedirect.com/science/article/abs/pii/S0263237304000453 Market Strategies for Climate Change.] (2004)
 +
* Anderson, S.E. et al. [https://www.nber.org/papers/w24645 The Critical Role of Markets in Climate Change Adaptation]. (2018)
 +
* Center for Climate and Energy Solutions. [https://www.c2es.org/content/market-based-strategies/ Market-based strategies.] (2019)
  
 
== Community ==
 
== Community ==
Line 13: Line 62:
  
 
=== Societies and organizations ===
 
=== Societies and organizations ===
 +
 +
* [https://www.c2es.org/events/ Center for Climate and Energy Solutions]
  
 
=== Past and upcoming events ===
 
=== Past and upcoming events ===
 +
 +
* [https://www.un.org/en/climatechange/un-climate-summit-2019.shtml United Nations Climate Summit (September 2019)]
 +
* [https://unfccc.int/process-and-meetings/conferences/bonn-climate-change-conference-june-2019/bonn-climate-change-conference-june-2019 Bonn Climate Change Conference (June 2019)]
  
 
== Important considerations ==
 
== Important considerations ==

Revision as of 13:53, 25 August 2020

TODO: add context regarding contribution to emissions, connection to ML, and selected readings (summarize)

Decision + Policy

When creating policies, decision-makers must often negotiate fundamental uncertainties in the underlying data. ML can help alleviate some of this uncertainty by extracting information from satellite imagery, sensors, social media posts, policy documents, and other sources (as detailed elsewhere in the paper).

Decision-makers often construct mathematical models to help them assess or trade off between different policy alternatives. ML can help provide new techniques for working with integrated assessment models, multi-objective optimization, and other models commonly used by decision-makers.

When creating new policies, decision-makers may wish to understand previous policies and analyze how these policies performed. ML can help on both fronts by analyzing the text of existing policies and by performing causal inference on historical data.

Markets

Carbon pricing and other market-based measures can incentivize the reduction of greenhouse gas emissions. ML can help predict prices in carbon markets and analyze the main drivers of these prices.

When designing market-based strategies, it is necessary to understand how effectively each strategy will reduce emissions, as well as how the underlying socio-technical system may be affected. ML can help assess the outcomes of market-based strategies to ensure they are effective and equitable.

Data

TODO: Intro Paragraph

Methods and Software

TODO: Intro par


Recommended Readings

General

Policy Design

Markets and Pricing

Community

Journals and conferences

Societies and organizations

Past and upcoming events

Important considerations

Next steps

References