Physically-constrained ML projections

This is the approved revision of this page, as well as being the most recent.

🌎 This article is a stub, and is currently under construction. You can help by adding to it!

This page is part of the Climate Change AI Wiki, which aims provide resources at the intersection of climate change and machine learning.

Hybrid modelling[1], by incorporating physical-constraints into data-driven ML or deep learning models is a promising field of leveraging the large amounts of data available from observational products, while making use of physical constraints present in the climate system, to ensure robust projections and extrapolating well outside of the training data[2]. The output from physics-driven GCM climate models can be used for a "perfect model test" of the ML models, before the ML model is applied to make projections based on the observations[3].

Background ReadingsEdit

Conferences, Journals, and Professional OrganizationsEdit

Libraries and ToolsEdit

DataEdit

Future DirectionsEdit

Relevant Groups and OrganizationsEdit

ReferencesEdit

  1. Reichstein, Markus; Camps-Valls, Gustau; Stevens, Bjorn; Jung, Martin; Denzler, Joachim; Carvalhais, Nuno; Prabhat (2019-02). "Deep learning and process understanding for data-driven Earth system science". Nature. 566 (7743): 195–204. doi:10.1038/s41586-019-0912-1. ISSN 1476-4687. Check date values in: |date= (help)
  2. Zhao, Wen Li; Gentine, Pierre; Reichstein, Markus; Zhang, Yao; Zhou, Sha; Wen, Yeqiang; Lin, Changjie; Li, Xi; Qiu, Guo Yu (2019). "Physics-Constrained Machine Learning of Evapotranspiration". Geophysical Research Letters. 46 (24): 14496–14507. doi:10.1029/2019GL085291. ISSN 1944-8007.
  3. Schlund, Manuel; Eyring, Veronika; Camps‐Valls, Gustau; Friedlingstein, Pierre; Gentine, Pierre; Reichstein, Markus (2020). "Constraining Uncertainty in Projected Gross Primary Production With Machine Learning". Journal of Geophysical Research: Biogeosciences. 125 (11): e2019JG005619. doi:10.1029/2019JG005619. ISSN 2169-8961.