Greenhouse Gas Emissions Detection

Revision as of 21:38, 6 December 2020 by Priya (talk | contribs)

(diff) ← Older revision | Approved revision (diff) | Latest revision (diff) | Newer revision → (diff)

🌎 This article is a stub, and is currently under construction. You can help by adding to it!

This page is part of the Climate Change AI Wiki, which aims provide resources at the intersection of climate change and machine learning.

Machine learning can be used to help measure greenhouse gas emissions using remote sensing data. This can in turn help create better climate change policies, drive climate-related investments, and otherwise inform climate action. Example applications of machine learning include:[1]

  • Detecting methane leaks from natural gas pipelines using satellite and aerial imagery.
  • Measuring power plant CO2 emissions from a combination of satellite imagery and electricity market data.
  • Measuring traditionally hard-to-quantify emissions in the land use sector, e.g., from agriculture and forestry.

Background ReadingsEdit

Online Courses and Course MaterialsEdit

Conferences, Journals, and Professional OrganizationsEdit

Libraries and ToolsEdit

DataEdit

GeneralEdit

Carbon dioxideEdit

  • United States Environmental Protection Agency's Air Markets Program data: Datasets from the US EPA's emissions trading programs. For instance, the Continuous Emissions Monitoring System dataset (also available via the EPA's FTP site) provides hourly CO2 emissions and generation for many fossil fuel power plants in the United States. Available here.

MethaneEdit

  • Copernicus global methane data: Dataset on global methane emissions from 2002 onwards from the European Space Agency, available here.

Future DirectionsEdit

Relevant Groups and OrganizationsEdit

  • Climate TRACE: A coalition of organizations seeking to "mobiliz[e] the global tech community—harnessing satellites, artificial intelligence, and collective expertise—to track human-caused emissions to specific sources in real time—independently and publicly." Website here.

ReferencesEdit

  1. Bartoszek, L.; et al. (2014-10-01). "Mu2e Technical Design Report". Explicit use of et al. in: |last2= (help); Cite journal requires |journal= (help)