Editing Electricity Systems

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 27: Line 27:
 
*[[Power System State Estimation|'''State estimation''']]: Many power distribution systems have few sensors, but are increasingly necessary to monitor due to the increase in rooftop solar power. ML can provide algorithms for understanding the state of distribution systems in "low-observability" scenarios where traditional state estimation algorithms may not suffice.
 
*[[Power System State Estimation|'''State estimation''']]: Many power distribution systems have few sensors, but are increasingly necessary to monitor due to the increase in rooftop solar power. ML can provide algorithms for understanding the state of distribution systems in "low-observability" scenarios where traditional state estimation algorithms may not suffice.
 
*'''[[Greenhouse Gas Emissions Detection|Greenhouse gas emissions mapping]]''': While some electricity system operators release publicly-available data on the emissions associated with fossil fuel generators, this data is not available in many cases. ML can help map greenhouse gas emissions using a combination of remote sensing and on-the-ground data.
 
*'''[[Greenhouse Gas Emissions Detection|Greenhouse gas emissions mapping]]''': While some electricity system operators release publicly-available data on the emissions associated with fossil fuel generators, this data is not available in many cases. ML can help map greenhouse gas emissions using a combination of remote sensing and on-the-ground data.
*'''[[Non-Intrusive Load Monitoring|Non-Intrusive Load Monitoring (NILM)]]''': ML can be used to disaggregate the net-load measurements into their individual components. It finds application in disaggregating native load and PV generation measurements from the net-load measurements obtained at the feeder-lever or at the residential-level. Another aspect of energy disaggregation is non intrusive load monitoring, wherein the load measurement is disaggregated into different components representing the consumption of different household electric appliances.
+
*[[Energy Disaggregation]]: ML can be used to disaggregate the net-load measurements into their individual components. It finds application in disaggregating native load and PV generation measurements from the net-load measurements obtained at the feeder-lever or at the residential-level. Another aspect of energy disaggregation is non intrusive load monitoring, wherein the load measurement is disaggregated into different components representing the consumption of different household electric appliances.
   
 
== Background Readings ==
 
== Background Readings ==
Please note that all contributions to Climate Change AI Wiki are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) (see Climate Change AI Wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)