Editing Electricity Systems

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
''This page is about the intersection of electricity systems and machine learning (ML) in the context of climate change mitigation. For an overview of electricity systems as a whole, please see the [https://en.wikipedia.org/wiki/Electric_power_system Wikipedia page] on this topic.''[[File:ElectricitySystems.png|thumb|A schematic of selected opportunities to reduce greenhouse emissions from electricity systems using machine learning. From "Tackling Climate Change with Machine Learning."<ref name=":0">{{Cite journal|last=Rolnick|first=David|last2=Donti|first2=Priya L.|last3=Kaack|first3=Lynn H.|last4=Kochanski|first4=Kelly|last5=Lacoste|first5=Alexandre|last6=Sankaran|first6=Kris|last7=Ross|first7=Andrew Slavin|last8=Milojevic-Dupont|first8=Nikola|last9=Jaques|first9=Natasha|last10=Waldman-Brown|first10=Anna|last11=Luccioni|first11=Alexandra|date=2019-11-05|title=Tackling Climate Change with Machine Learning|url=http://arxiv.org/abs/1906.05433|journal=arXiv:1906.05433 [cs, stat]}}</ref>]]The energy supply sector contributes about 35% of human-caused greenhouse gas emissions,<ref>Bruckner T., I.A. Bashmakov, Y. Mulugetta, H. Chum, A. de la Vega Navarro, J. Edmonds, A. Faaij, B. Fungtammasan, A. Garg, E. Hertwich, D. Honnery, D. Infield, M. Kainuma, S. Khennas, S. Kim, H.B. Nimir, K. Riahi, N. Strachan, R. Wiser, and X. Zhang, 2014: Energy Systems. In: ''Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change'' [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.</ref> within which decarbonizing electricity supply plays an important role. In addition, many climate change strategies in sectors such as [[Buildings and Cities|buildings]], [[transportation]], and [[industry]] rely on low-carbon electricity. To reduce greenhouse gas emissions from electricity systems, it will be necessary to both transition quickly to low-carbon electricity sources (e.g., solar, wind, and nuclear) and to reduce emissions from existing electricity system operations in the meantime.
+
''This page is about the intersection of electricity systems and machine learning in the context of climate change mitigation. For an overview of electricity systems as a whole, please see the [https://en.wikipedia.org/wiki/Electric_power_system Wikipedia page] on this topic.''[[File:ElectricitySystems.png|thumb|A schematic of selected opportunities to reduce greenhouse emissions from electricity systems using machine learning. From "Tackling Climate Change with Machine Learning."<ref name=":0">{{Cite journal|last=Rolnick|first=David|last2=Donti|first2=Priya L.|last3=Kaack|first3=Lynn H.|last4=Kochanski|first4=Kelly|last5=Lacoste|first5=Alexandre|last6=Sankaran|first6=Kris|last7=Ross|first7=Andrew Slavin|last8=Milojevic-Dupont|first8=Nikola|last9=Jaques|first9=Natasha|last10=Waldman-Brown|first10=Anna|last11=Luccioni|first11=Alexandra|date=2019-11-05|title=Tackling Climate Change with Machine Learning|url=http://arxiv.org/abs/1906.05433|journal=arXiv:1906.05433 [cs, stat]}}</ref>]]As described in the paper "Tackling Climate Change with Machine Learning"<ref name=":0" />:<blockquote>AI has been called the new electricity, given its potential to transform entire industries.<ref>{{Cite web|title=Andrew Ng: Artificial Intelligence is the New Electricity - YouTube|url=https://www.youtube.com/watch?v=21EiKfQYZXc|website=www.youtube.com}}</ref> Interestingly, electricity itself is one of the industries that AI is poised to transform. Many electricity systems are awash in data, and the industry has begun to envision next-generation systems (smart grids) driven by AI and ML.<ref>{{Cite journal|last=Ramchurn|first=Sarvapali D.|last2=Vytelingum|first2=Perukrishnen|last3=Rogers|first3=Alex|last4=Jennings|first4=Nicholas R.|date=2012|title=Putting the 'smarts' into the smart grid|url=http://dx.doi.org/10.1145/2133806.2133825|journal=Communications of the ACM|volume=55|issue=4|pages=86–97|doi=10.1145/2133806.2133825|issn=0001-0782|via=}}</ref><ref>{{Citation|title=Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey|url=http://dx.doi.org/10.1007/978-3-319-13290-7_7|publisher=Springer International Publishing}}</ref><ref>{{Cite web|title=How artificial intelligence will affect the future of energy and climate|url=https://www.brookings.edu/research/how-artificial-intelligence-will-affect-the-future-of-energy-and-climate/|website=Brookings|date=2019-01-10|language=en-US}}</ref>
   
  +
Electricity systems are responsible for about a quarter of human-caused greenhouse gas emissions each year.<ref>IPCC. Climate Change 2014: ''Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change'' [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlomer, C. von Stechow, T. Zwickel, J.C. Minx, (eds.)]. 2014.</ref> Moreover, as buildings, transportation, and other sectors seek to replace GHG-emitting fuels, demand for low-carbon electricity will grow. To reduce emissions from electricity systems, society must
AI and machine learning are often discussed in the electricity sector in the context of smart grids,<ref>{{Cite journal|last=Ramchurn|first=Sarvapali D.|last2=Vytelingum|first2=Perukrishnen|last3=Rogers|first3=Alex|last4=Jennings|first4=Nicholas R.|date=2012|title=Putting the 'smarts' into the smart grid|url=http://dx.doi.org/10.1145/2133806.2133825|journal=Communications of the ACM|volume=55|issue=4|pages=86–97|doi=10.1145/2133806.2133825|issn=0001-0782|via=}}</ref><ref>{{Citation|title=Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey|url=http://dx.doi.org/10.1007/978-3-319-13290-7_7|publisher=Springer International Publishing}}</ref><ref>{{Cite web|title=How artificial intelligence will affect the future of energy and climate|url=https://www.brookings.edu/research/how-artificial-intelligence-will-affect-the-future-of-energy-and-climate/|website=Brookings|date=2019-01-10|language=en-US}}</ref> which broadly refer to the concept of "intelligent" electric grids managed automatically in a data-driven manner. In particular, ML has been used to forecast electricity supply and demand, to improve power system optimization, and to improve system efficiency through applications such as predictive maintenance. In addition, ML has also been used to accelerate scientific discovery of clean energy technologies, and to gather electricity infrastructure data that may be useful for system planners and policymakers.<ref name=":0" />
 
  +
  +
* Rapidly transition to low-carbon electricity sources (such as solar, wind, hydro, and nuclear) and phase out carbon-emitting sources (such as coal, natural gas, and other fossil fuels).
  +
* Reduce emissions from existing CO<sub>2</sub>-emitting power plants, since the transition to low-carbon power will not happen overnight.
  +
* Implement these changes across all countries and contexts, as electricity systems are everywhere.
  +
  +
ML can contribute on all fronts by informing the research, deployment, and operation of electricity system technologies. Such contributions include accelerating the development of clean energy technologies, improving forecasts of demand and clean energy, improving electricity system optimization and management, and enhancing system monitoring. These contributions require a variety of ML paradigms and techniques, as well as close collaborations with the electricity industry and other experts to integrate insights from operations research, electrical engineering, physics, chemistry, the social sciences, and other fields.</blockquote>
   
 
== Machine Learning Application Areas ==
 
== Machine Learning Application Areas ==
Line 7: Line 13:
 
=== Enabling low-carbon electricity ===
 
=== Enabling low-carbon electricity ===
   
  +
*[[Electricity Supply and Demand Forecasting|Electricity supply and demand forecasting]]
*'''[[Electricity Supply Forecasting|Supply]], [[Energy Demand Forecasting|demand]] and [[Energy Price Forecasting|price]] forecasting''': The supply and demand of power must both be forecast ahead of time to inform electricity planning and scheduling. In more volatile energy systems, also forecasting of prices becomes relevant to utilize flexibility effectively. ML can help make these forecasts more accurate, improve temporal and spatial resolution, and quantify uncertainty.
 
  +
* Improving power system optimization
*'''Improving [[Power System Optimization|power system optimization]]''': Scheduling algorithms on the power grid have trouble handling large quantities of solar, wind, and other time-varying electricity sources. ML can help improve electricity scheduling algorithms, control storage and flexible demand, and design real-time electricity prices that reduce CO<sub>2</sub> emissions.
 
  +
*[[Accelerated Materials Science|Accelerated materials science]] for clean energy technologies
*'''Improving [[Power System Planning|system planning]]''': Algorithms for planning new low-carbon energy infrastructure are often large and slow. ML can help speed up or provide proxies for these algorithms.
 
  +
* Optimizing variable generators
*'''Informing [[Maximum Power Point Tracking|maximum power point tracking]]''': Maximum power point tracking refers to a variety of techniques that aim to maximize the power output of weather-dependent renewable energy generators, such as solar panels and wind turbines. ML can help model attributes of renewable energy systems or actively control these systems (e.g., by modulating wind turbine rotation speed) in order to improve power output.
 
  +
* System planning for clean energy technologies
*'''[[Accelerated Science|Accelerated science]] for clean energy technologies''': Designing new materials is important for many applications, including energy storage via batteries or solar/chemical fuels. ML can help suggest promising materials to try, thereby speeding up the materials discovery process.
 
  +
*[[Nuclear Fusion|Accelerating nuclear fusion science]]
*'''Informing [[Nuclear Fusion|nuclear fusion]] research''': Nuclear fusion has the potential to produce safe, carbon-free electricity, but such reactors continue to consume more energy than they produce. While basic science and engineering are still needed, ML can help inform nuclear fusion research in a variety of ways, e.g., by suggesting parameters for physical experiments or modeling the behavior of plasma inside reactors.
 
   
 
=== Reducing current-system impacts ===
 
=== Reducing current-system impacts ===
   
  +
*[[Methane Leak Detection|Methane leak detection]]
*[[Methane Leak Detection|'''Methane leak detection''']]: In addition to the unavoidable climate impacts of burning fossil fuels, natural gas extraction sites, pipelines, and compressor stations leak methane, a powerful greenhouse gas. ML can help detect and prevent these leaks.
 
  +
* Modeling power grid emissions
*[[Power Grid Emissions Modeling|'''Power grid emissions modeling''']]: Reducing the emissions associated with electricity use requires understanding what the emissions on the electric grid actually are at any given moment. ML can help estimate and forecast emissions, and potentially model the uncertainty in these estimates.
 
   
=== General-purpose applications ===
+
=== Additional areas ===
   
  +
* Data collection via [[Remote Sensing|remote sensing]]
*[[Energy Infrastructure Mapping|'''Energy infrastructure mapping''']]: There are many cases in which decision-relevant information about energy infrastructure -- such as the locations and sizes of solar panels, or the location of power transmission and distribution infrastructure -- is not readily available. ML can help map some of this energy infrastructure using satellite imagery.
 
  +
* Predictive maintenance and fault detection
*[[Predictive Maintenance|'''Predictive maintenance and fault detection''']]: Quickly detecting power system faults can help reduce power system waste or improve the utilization of low-carbon energy resources. ML can help detect faults in real time from sensor data, or even forecast them ahead of time to enable preemptive maintenance.
 
*[[Power System State Estimation|'''State estimation''']]: Many power distribution systems have few sensors, but are increasingly necessary to monitor due to the increase in rooftop solar power. ML can provide algorithms for understanding the state of distribution systems in "low-observability" scenarios where traditional state estimation algorithms may not suffice.
 
*'''[[Greenhouse Gas Emissions Detection|Greenhouse gas emissions mapping]]''': While some electricity system operators release publicly-available data on the emissions associated with fossil fuel generators, this data is not available in many cases. ML can help map greenhouse gas emissions using a combination of remote sensing and on-the-ground data.
 
*'''[[Non-Intrusive Load Monitoring|Non-Intrusive Load Monitoring (NILM)]]''': ML can be used to disaggregate the net-load measurements into their individual components. It finds application in disaggregating native load and PV generation measurements from the net-load measurements obtained at the feeder-lever or at the residential-level. Another aspect of energy disaggregation is non intrusive load monitoring, wherein the load measurement is disaggregated into different components representing the consumption of different household electric appliances.
 
   
 
== Background Readings ==
 
== Background Readings ==
Line 49: Line 52:
 
*'''"Electric Power Systems" on Coursera''': A course covering the "standards and policies of the electric utility industry," including "basic vocabulary used in the business" and an introduction of "the electric power system, from generation of the electricity all the way to the wall plug." Enroll [https://www.coursera.org/learn/electric-power-systems here].
 
*'''"Electric Power Systems" on Coursera''': A course covering the "standards and policies of the electric utility industry," including "basic vocabulary used in the business" and an introduction of "the electric power system, from generation of the electricity all the way to the wall plug." Enroll [https://www.coursera.org/learn/electric-power-systems here].
   
  +
== Community ==
== Conferences, Journals, and Professional Organizations ==
 
   
=== Major conferences ===
+
=== Major conferences2 ===
   
 
 
*'''ACM e-Energy''': "The International Conference on Future Energy Systems (ACM e-Energy) aims to be the premier venue for researchers working in the broad areas of computing and communication for smart energy systems (including the smart grid), and in energy-efficient computing and communication systems". Website [https://energy.acm.org/eenergy-conference/ here].
 
 
*'''IEEE Power & Energy Society General Meeting''': One of the [https://www.ieee-pes.org/meetings-and-conferences IEEE Power & Energy Society's] flagship annual conferences, held in North America. Website [https://pes-gm.org/ here].
 
*'''IEEE Power & Energy Society General Meeting''': One of the [https://www.ieee-pes.org/meetings-and-conferences IEEE Power & Energy Society's] flagship annual conferences, held in North America. Website [https://pes-gm.org/ here].
 
*'''Power Systems Computation Conference''': A biennial conference held in Europe, focused on computational power system methods. Website [https://pscc-central.epfl.ch/ here].
 
*'''Power Systems Computation Conference''': A biennial conference held in Europe, focused on computational power system methods. Website [https://pscc-central.epfl.ch/ here].
Line 65: Line 65:
 
*'''IEEE Transactions on Power Systems''': Covers the "requirements, planning, analysis, reliability, operation, and economics of electric generating, transmission, and distribution systems for general industrial, commercial, public, and domestic consumption." Journal website [https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=59 here].
 
*'''IEEE Transactions on Power Systems''': Covers the "requirements, planning, analysis, reliability, operation, and economics of electric generating, transmission, and distribution systems for general industrial, commercial, public, and domestic consumption." Journal website [https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=59 here].
 
*'''IEEE Transactions on Smart Grid''': "[A] cross disciplinary and internationally archival journal aimed at disseminating results of research on smart grid that relates to, arises from, or deliberately influences energy generation, transmission, distribution and delivery." Journal website [https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5165411 here].
 
*'''IEEE Transactions on Smart Grid''': "[A] cross disciplinary and internationally archival journal aimed at disseminating results of research on smart grid that relates to, arises from, or deliberately influences energy generation, transmission, distribution and delivery." Journal website [https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5165411 here].
*'''IEEE Transactions on Sustainable Energy:''' This journal is aimed at disseminating results of research on the design, implementation, grid-integration, and control of sustainable energy technologies and systems that can be integrated into the power transmission and/or distribution grid. Journal website [https://www.ieee-pes.org/ieee-transactions-on-sustainable-energy here].
 
   
=== Major professional organizations ===
+
=== Major societies and organizations ===
   
 
*'''IEEE Power & Energy Society''': "[T]he world's largest forum for sharing the latest in technological developments in the electric power industry, for developing standards that guide the development and construction of equipment and systems, and for educating members of the industry and the general public." Website [https://www.ieee-pes.org/ here].
 
*'''IEEE Power & Energy Society''': "[T]he world's largest forum for sharing the latest in technological developments in the electric power industry, for developing standards that guide the development and construction of equipment and systems, and for educating members of the industry and the general public." Website [https://www.ieee-pes.org/ here].
*'''ACM Special Interest Group on Energy Systems and Informatics''': "ACM SIGEnergy is a professional forum for scientists, engineers, educators, and professionals for discussing energy systems and energy informatics. It brings together an inter-disciplinary group of computer scientists with diverse backgrounds [...] to discuss and address key challenges in future energy systems, and their impact on society." Website [https://energy.acm.org/ here].
 
   
 
== Libraries and Tools ==
 
== Libraries and Tools ==
  +
 
*'''PowerTAC''': A power system simulation environment, available [https://powertac.org/ here].
 
*'''PowerTAC''': A power system simulation environment, available [https://powertac.org/ here].
 
*'''Energy Policy Simulator''': A tool to simulate the greenhouse gas emissions effects of various climate and energy policies, available [https://us.energypolicy.solutions/docs/ here].
 
*'''Energy Policy Simulator''': A tool to simulate the greenhouse gas emissions effects of various climate and energy policies, available [https://us.energypolicy.solutions/docs/ here].
 
*'''Optimal Power Flow (OPF) Sampler Package''': A Julia package to generate power grid data samples via optimal power flow methods, available [https://github.com/invenia/OPFSampler.jl/ here].
 
*'''Optimal Power Flow (OPF) Sampler Package''': A Julia package to generate power grid data samples via optimal power flow methods, available [https://github.com/invenia/OPFSampler.jl/ here].
 
*'''Pyiso''': A Python client library for data from power grid balancing authorities in the United States, Canada, and Europe. Documentation [https://pyiso.readthedocs.io/en/latest here].
 
*'''Pyiso''': A Python client library for data from power grid balancing authorities in the United States, Canada, and Europe. Documentation [https://pyiso.readthedocs.io/en/latest here].
*'''List of Resources by ACM SIG Energy'''': A list of models, libraries, software and datasets curated by the [https://energy.acm.org/ ACM Special Interest Group on Energy Systems and Informatics], available [https://energy.acm.org/resources/ here].
 
* '''OPFLEarn.jl''': A [https://github.com/NREL/OPFLearn.jl Julia package] for creating datasets for machine learning approaches to solving AC optimal power flow (AC OPF).
 
   
 
== Data ==
 
== Data ==
Line 89: Line 86:
 
*'''Pecan Street:''' Disaggregated energy and water data, available [https://www.pecanstreet.org/dataport/about/ here] (requires login)
 
*'''Pecan Street:''' Disaggregated energy and water data, available [https://www.pecanstreet.org/dataport/about/ here] (requires login)
 
*'''United States Environmental Protection Agency's Air Markets Program data''': Datasets from the US EPA's emissions trading programs. For instance, the Continuous Emissions Monitoring System dataset (also available via the EPA's [ftp://newftp.epa.gov/DMDnLoad/emissions/ FTP site]) provides hourly emissions and generation for many fossil fuel generators in the United States. Available [https://ampd.epa.gov/ampd/ here].
 
*'''United States Environmental Protection Agency's Air Markets Program data''': Datasets from the US EPA's emissions trading programs. For instance, the Continuous Emissions Monitoring System dataset (also available via the EPA's [ftp://newftp.epa.gov/DMDnLoad/emissions/ FTP site]) provides hourly emissions and generation for many fossil fuel generators in the United States. Available [https://ampd.epa.gov/ampd/ here].
* '''Utility Transition Hub™ Data''': Datasets on US-based utility finances, investments, operations, emissions and the utilities' alignment and commitments for the 1.5°C goals. Available [https://utilitytransitionhub.rmi.org/data-download/ here].
 
   
 
=== Europe ===
 
=== Europe ===
Line 103: Line 99:
   
 
*'''Project Sunroof by Google''': Detailed estimates of rooftop solar potential based on sunlight and roof space, available [https://www.google.com/get/sunroof/data-explorer/ here].
 
*'''Project Sunroof by Google''': Detailed estimates of rooftop solar potential based on sunlight and roof space, available [https://www.google.com/get/sunroof/data-explorer/ here].
*'''EDP Open Data''': EDP, a multinational utility company, publishes open data on solar and wind power assets (including clean datasets put together for previous competitions). Available [https://opendata.edp.com/pages/homepage/ here].
 
*'''Ausgrid Data'''': Ausgrid, a DSO in NSW, Australia, [https://www.ausgrid.com.au/Industry/Our-Research/Data-to-share provides several datasets], among them 300 households, 225 substations and data about outages.
 
 
== Relevant Groups and Organizations ==
 
 
* '''Electric Power Research Institute (EPRI)''': A non-profit organization that conducts research, development, and demonstration projects focused on electricity generation and delivery, and with over 1,000 member organizations around the world. Website [https://www.epri.com/ here].
 
*'''The Global Power System Transformation Consortium (G-PST)''': An international consortium of the leading electricity system operators "to identify common, cutting-edge research questions that can inform large- scale national research and development investments." Website [https://globalpst.org/ here] and inaugural research agenda [https://globalpst.org/resources/ here].
 
   
 
== References ==
 
== References ==
Please note that all contributions to Climate Change AI Wiki are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) (see Climate Change AI Wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)