Editing Electricity Systems
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 3: | Line 3: | ||
AI and machine learning are often discussed in the electricity sector in the context of smart grids,<ref>{{Cite journal|last=Ramchurn|first=Sarvapali D.|last2=Vytelingum|first2=Perukrishnen|last3=Rogers|first3=Alex|last4=Jennings|first4=Nicholas R.|date=2012|title=Putting the 'smarts' into the smart grid|url=http://dx.doi.org/10.1145/2133806.2133825|journal=Communications of the ACM|volume=55|issue=4|pages=86–97|doi=10.1145/2133806.2133825|issn=0001-0782|via=}}</ref><ref>{{Citation|title=Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey|url=http://dx.doi.org/10.1007/978-3-319-13290-7_7|publisher=Springer International Publishing}}</ref><ref>{{Cite web|title=How artificial intelligence will affect the future of energy and climate|url=https://www.brookings.edu/research/how-artificial-intelligence-will-affect-the-future-of-energy-and-climate/|website=Brookings|date=2019-01-10|language=en-US}}</ref> which broadly refer to the concept of "intelligent" electric grids managed automatically in a data-driven manner. In particular, ML has been used to forecast electricity supply and demand, to improve power system optimization, and to improve system efficiency through applications such as predictive maintenance. In addition, ML has also been used to accelerate scientific discovery of clean energy technologies, and to gather electricity infrastructure data that may be useful for system planners and policymakers.<ref name=":0" /> |
AI and machine learning are often discussed in the electricity sector in the context of smart grids,<ref>{{Cite journal|last=Ramchurn|first=Sarvapali D.|last2=Vytelingum|first2=Perukrishnen|last3=Rogers|first3=Alex|last4=Jennings|first4=Nicholas R.|date=2012|title=Putting the 'smarts' into the smart grid|url=http://dx.doi.org/10.1145/2133806.2133825|journal=Communications of the ACM|volume=55|issue=4|pages=86–97|doi=10.1145/2133806.2133825|issn=0001-0782|via=}}</ref><ref>{{Citation|title=Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey|url=http://dx.doi.org/10.1007/978-3-319-13290-7_7|publisher=Springer International Publishing}}</ref><ref>{{Cite web|title=How artificial intelligence will affect the future of energy and climate|url=https://www.brookings.edu/research/how-artificial-intelligence-will-affect-the-future-of-energy-and-climate/|website=Brookings|date=2019-01-10|language=en-US}}</ref> which broadly refer to the concept of "intelligent" electric grids managed automatically in a data-driven manner. In particular, ML has been used to forecast electricity supply and demand, to improve power system optimization, and to improve system efficiency through applications such as predictive maintenance. In addition, ML has also been used to accelerate scientific discovery of clean energy technologies, and to gather electricity infrastructure data that may be useful for system planners and policymakers.<ref name=":0" /> |
||
− | == |
+ | == Application Areas == |
=== Enabling low-carbon electricity === |
=== Enabling low-carbon electricity === |