Editing Designing Low-Carbon Urban Form

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
Urban form, the physical form of cities, has important implications of energy use and GHG emissions, for example sprawled cities can induce mobility demand. ML can help analyze energy use implications of different urban forms, simulate urban development pathways and (re-)designing neighborhoods by finding patterns in urban form data.
 
 
 
== Background Readings ==
 
== Background Readings ==
   
=== Analyzing energy use implications of different urban forms ===
 
 
* '''"A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand" (2017)'''<ref>{{Cite journal|last=Silva|first=Mafalda C.|last2=Horta|first2=Isabel M.|last3=Leal|first3=Vítor|last4=Oliveira|first4=Vítor|date=2017-09|title=A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand|url=http://dx.doi.org/10.1016/j.apenergy.2017.05.113|journal=Applied Energy|volume=202|pages=386–398|doi=10.1016/j.apenergy.2017.05.113|issn=0306-2619}}</ref>: This study using neural networks finds that for the city of Porto, urban form explains about 78% of the variation of energy use.
 
* '''"Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo" (2018)'''<ref>{{Cite journal|last=Ding|first=Chuan|last2=Cao|first2=Xinyu (Jason)|last3=Næss|first3=Petter|date=2018-04-01|title=Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo|url=http://www.sciencedirect.com/science/article/pii/S0965856417310030|journal=Transportation Research Part A: Policy and Practice|language=en|volume=110|pages=107–117|doi=10.1016/j.tra.2018.02.009|issn=0965-8564}}</ref>: This study investigate how the distance to the central areas in the city of Oslo is related to the distance traveled, and makes urban form proposal for driving reduction.
 
* '''"Examining threshold effects of built environment elements on travel-related carbon-dioxide emissions" (2019)'''<ref>{{Cite journal|last=Wu|first=Xinyi|last2=Tao|first2=Tao|last3=Cao|first3=Jason|last4=Fan|first4=Yingling|last5=Ramaswami|first5=Anu|date=2019-10-01|title=Examining threshold effects of built environment elements on travel-related carbon-dioxide emissions|url=http://www.sciencedirect.com/science/article/pii/S1361920918312690|journal=Transportation Research Part D: Transport and Environment|language=en|volume=75|pages=1–12|doi=10.1016/j.trd.2019.08.018|issn=1361-9209}}</ref>''':'''
 
* '''"Non-linear relationships between built environment characteristics and electric-bike ownership in Zhongshan, China" (2019)'''<ref>{{Cite journal|last=Ding|first=Chuan|last2=Cao|first2=Xinyu|last3=Dong|first3=Meixuan|last4=Zhang|first4=Yi|last5=Yang|first5=Jiawen|date=2019-10-01|title=Non-linear relationships between built environment characteristics and electric-bike ownership in Zhongshan, China|url=http://www.sciencedirect.com/science/article/pii/S1361920919301464|journal=Transportation Research Part D: Transport and Environment|language=en|volume=75|pages=286–296|doi=10.1016/j.trd.2019.09.005|issn=1361-9209}}</ref>''':'''
 
* '''"Exploring the Nonlinear Relationship between the Built Environment and Active Travel in the Twin Cities" (2020)'''<ref>{{Cite journal|last=Tao|first=Tao|last2=Wu|first2=Xinyi|last3=Cao|first3=Jason|last4=Fan|first4=Yingling|last5=Das|first5=Kirti|last6=Ramaswami|first6=Anu|date=2020-05-26|title=Exploring the Nonlinear Relationship between the Built Environment and Active Travel in the Twin Cities|url=https://doi.org/10.1177/0739456X20915765|journal=Journal of Planning Education and Research|language=en|pages=0739456X20915765|doi=10.1177/0739456X20915765|issn=0739-456X}}</ref>''':'''
 
 
=== Simulating urban development pathways ===
 
 
* '''"A scenario-based approach for assessing the energy performance of urban development pathways" (2018)'''<ref>{{Cite journal|last=Silva|first=Mafalda|last2=Leal|first2=Vítor|last3=Oliveira|first3=Vítor|last4=Horta|first4=Isabel M.|date=2018-07-01|title=A scenario-based approach for assessing the energy performance of urban development pathways|url=http://www.sciencedirect.com/science/article/pii/S2210670717313318|journal=Sustainable Cities and Society|language=en|volume=40|pages=372–382|doi=10.1016/j.scs.2018.01.028|issn=2210-6707}}</ref>''':'''
 
* '''"Spatial sensitivity analysis for urban land use prediction with physics-constrained conditional generative adversarial networks" (2019)'''<ref>{{Cite journal|last=Albert|first=Adrian|last2=Kaur|first2=Jasleen|last3=Strano|first3=Emanuele|last4=Gonzalez|first4=Marta|date=2019-07-22|title=Spatial sensitivity analysis for urban land use prediction with physics-constrained conditional generative adversarial networks|url=http://arxiv.org/abs/1907.09543|journal=arXiv:1907.09543 [cs, stat]}}</ref>''':'''
 
* '''"Modeling Urbanization Patterns with Generative Adversarial Networks" (2018)'''<ref>{{Cite journal|last=Albert|first=A.|last2=Strano|first2=E.|last3=Kaur|first3=J.|last4=González|first4=M.|date=2018-07|title=Modeling Urbanization Patterns with Generative Adversarial Networks|url=https://ieeexplore.ieee.org/abstract/document/8518032|journal=IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium|pages=2095–2098|doi=10.1109/IGARSS.2018.8518032}}</ref>''':'''
 
 
=== (Re-)designing neighborhoods ===
 
 
* '''"Nonlinear effect of accessibility on car ownership in Beijing: Pedestrian-scale neighborhood planning" (2020)'''<ref>{{Cite journal|last=Zhang|first=Wenjia|last2=Zhao|first2=Yajing|last3=(Jason) Cao|first3=Xinyu|last4=Lu|first4=Daming|last5=Chai|first5=Yanwei|date=2020-09-01|title=Nonlinear effect of accessibility on car ownership in Beijing: Pedestrian-scale neighborhood planning|url=http://www.sciencedirect.com/science/article/pii/S1361920920306325|journal=Transportation Research Part D: Transport and Environment|language=en|volume=86|pages=102445|doi=10.1016/j.trd.2020.102445|issn=1361-9209}}</ref>''':'''
 
* '''"The evaluation of the spatial integration of station areas via the node place model; an application to subway station areas in Tehran"'''<ref>{{Cite journal|last=Monajem|first=Saeed|last2=Ekram Nosratian|first2=Farzan|date=2015-10-01|title=The evaluation of the spatial integration of station areas via the node place model; an application to subway station areas in Tehran|url=http://www.sciencedirect.com/science/article/pii/S1361920915001017|journal=Transportation Research Part D: Transport and Environment|language=en|volume=40|pages=14–27|doi=10.1016/j.trd.2015.07.009|issn=1361-9209}}</ref> '''(2015):'''
 
 
<br />
 
 
== Community ==
 
== Community ==
   
Line 32: Line 10:
   
 
== References ==
 
== References ==
<references /><br />
 
Please note that all contributions to Climate Change AI Wiki are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) (see Climate Change AI Wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)